python - pandas AttributeError: 'unicode' object has no attribute 'view' -
python - pandas AttributeError: 'unicode' object has no attribute 'view' -
this killer problem has simple solution pandas newbie me:
i'm trying replace 1 record of pandas dataframe (df) latest version of label (found in separate dataframe (latest_version).
df.ix[label] = latest_version.ix[label]
the error:
attributeerror: 'unicode' object has no attribute 'view'
df big , complex (and proprietary) i'd avoid posting if can; i'm hoping there's easy i'm missing can't figure out.
edit: output of df.info() , latest_version.info()
ipdb> df.info() <class 'pandas.core.frame.dataframe'> index: 7 entries, g info columns (total 73 columns): column 0 7 non-null object column 1 7 non-null object column 2 7 non-null object column 3 7 non-null object column 4 7 non-null object column 5 7 non-null float64 column 6 1 non-null object column 7 7 non-null object column 8 7 non-null object column 9 6 non-null datetime64[ns] column 10 0 non-null object column 11 0 non-null object column 12 5 non-null object column 13 0 non-null object column 14 0 non-null object column 15 6 non-null datetime64[ns] column 16 0 non-null object column 17 0 non-null object column 18 0 non-null object column 19 0 non-null object column 20 0 non-null object column 21 0 non-null object column 22 0 non-null object column 23 0 non-null object column 24 0 non-null object column 25 0 non-null object column 26 0 non-null object column 27 0 non-null object column 28 0 non-null object column 29 0 non-null object column 30 0 non-null object column 31 0 non-null object column 32 0 non-null object column 33 0 non-null object column 34 0 non-null object column 35 0 non-null object column 36 0 non-null object column 37 4 non-null object column 38 6 non-null object column 39 4 non-null object column 40 0 non-null object column 41 0 non-null object column 42 0 non-null object column 43 6 non-null object column 44 0 non-null object column 45 6 non-null object column 46 0 non-null object column 47 4 non-null object column 48 0 non-null object column 49 4 non-null object column 50 0 non-null object column 51 0 non-null object column 52 0 non-null object column 53 0 non-null object column 54 0 non-null object column 55 0 non-null object column 56 0 non-null object column 57 0 non-null object column 58 0 non-null object column 59 0 non-null object column 60 0 non-null object column 61 0 non-null object column 62 0 non-null object column 63 0 non-null object column 64 0 non-null object column 65 0 non-null object column 66 0 non-null object column 67 0 non-null object column 68 0 non-null object column 69 0 non-null object column 70 0 non-null object column 71 0 non-null object column 72 0 non-null object dtypes: datetime64[ns](2), float64(1), object(70)ipdb> ipdb> latest_version.info() <class 'pandas.core.frame.dataframe'> index: 4 entries, d info columns (total 73 columns): column 0 4 non-null object column 1 4 non-null object column 2 4 non-null object column 3 4 non-null object column 4 4 non-null object column 5 4 non-null int64 column 6 4 non-null object column 7 4 non-null object column 8 4 non-null object column 9 4 non-null object column 10 4 non-null object column 11 4 non-null object column 12 4 non-null object column 13 4 non-null object column 14 4 non-null object column 15 4 non-null object column 16 3 non-null object column 17 4 non-null object column 18 4 non-null object column 19 4 non-null object column 20 3 non-null object column 21 3 non-null object column 22 4 non-null object column 23 4 non-null object column 24 4 non-null object column 25 4 non-null object column 26 4 non-null object column 27 4 non-null object column 28 4 non-null object column 29 4 non-null object column 30 4 non-null object column 31 4 non-null object column 32 4 non-null object column 33 4 non-null object column 34 4 non-null object column 35 4 non-null object column 36 4 non-null object column 37 4 non-null object column 38 4 non-null object column 39 4 non-null object column 40 4 non-null object column 41 4 non-null object column 42 4 non-null object column 43 4 non-null object column 44 4 non-null object column 45 4 non-null float64 column 46 4 non-null object column 47 4 non-null object column 48 4 non-null object column 49 4 non-null object column 50 4 non-null object column 51 4 non-null object column 52 4 non-null object column 53 4 non-null object column 54 4 non-null object column 55 4 non-null object column 56 1 non-null object column 57 1 non-null object column 58 4 non-null object column 59 4 non-null object column 60 4 non-null object column 61 4 non-null object column 62 4 non-null object column 63 4 non-null object column 64 4 non-null object column 65 4 non-null object column 66 4 non-null object column 67 4 non-null object column 68 4 non-null object column 69 4 non-null object column 70 4 non-null object column 71 4 non-null object column 72 4 non-null object dtypes: float64(1), int64(1), object(71)ipdb>
further edit (in response ed): here tables columns have different types:
ipdb> latest_version.ix[:,[5,9,15]] line_number entry_date entry_ref_a unique_index new/aaaaaaaaaaaaaaaaaaa 0 2014-12-30 2015-01-14 new/aaaaaaaaaaaaaaaaaab 1 2014-12-30 new/aaaaaaaaaaaaaaaaaac 2 2014-12-30 ipdb>/df.ix[:,[5,9,15]] line_number entry_date \ unique_index old/204442 0 1419897600000000000 old/343278 1 1419897600000000000 old/359628 2 1419897600000000000 new/aaaaaaaaaaaaaaaaaaa 0 2014-12-30 entry_ref_a unique_index old/204442 1421193600000000000 old/343278 1421193600000000000 old/359628 1422230400000000000 new/aaaaaaaaaaaaaaaaaaa 2015-01-14
definitely lends credence thought there's type mismatch issue here...
so problem here seems had mismatch on dtypes between 2 dfs trying assign , from:
df dtypes: datetime64[ns](2), float64(1), object(70)
whilst
latest_version :dtypes: float64(1), int64(1), object(71)
from output can see that columns clash datetimes, whilst int64's in corresponding column in other df.
you can convert ill-formed columns datetime doing:
df['entry_date'] = pd.to_datetime(df['entry_date')
and likewise entry_ref_a
python pandas
Comments
Post a Comment