integer - how to assing coefficients both positive and real using dsolve -
integer - how to assing coefficients both positive and real using dsolve -
so want solve these equation
fullsimplify[dsolve[{il''[t] + il[t]/(c*l) == vc[t]/(c*l*r), c*vc''[t] + vc'[t]/r + vc[t]/l == vin/l}, {il[t], vc[t]},t] {{c, l, r} \[element] reals && c >= 0 && l >= 0 && r >= 0}]
symbolically , want assing r,l , c positive real integer solution comes imaginer part there other way using dsolve
assuming variable greater 0 implies variable real. integer not help in problem.
if r, l , c greater 0 , less infinity multiplying both sides eliminate denominators speed , simplify calculation in mathematica.
if had simple initial conditions simpler , perhaps faster.
this gets rid of imaginary parts in vc , imaginary parts in il
simplify[exptotrig[dsolve[{ il''[t]*c*l*r + il[t]*r == vc[t], vc''[t]*c*l*r + vc'[t]*l + vc[t]*r == vin*r}, {il[t], vc[t]}, t]], l > 0 && c > 0 && r > 0]
and fast.
fullsimplify much slower, if wait result is
{{il[t] -> (e^(-(t/(2 c r))) (l sqrt[l - 4 c r^2] (c[3] + c r c[4]) cosh[(sqrt[1 - (4 c r^2)/l] t)/(2 c r)] + e^(t/(2 c r)) sqrt[l - 4 c r^2] (l vin - l (-r c[1] + c[3] + c r c[4]) cos[t/sqrt[c l]] + sqrt[c l] r (l c[2] + c[3]) sin[t/sqrt[c l]]) + sqrt[l] ((l - 2 c r^2) c[3] + c l r c[4]) sinh[(sqrt[1 - (4 c r^2)/l] t)/(2 c r)]))/(l r sqrt[l - 4 c r^2]), vc[t] -> ((l - 4 c r^2) vin + e^(-(t/(2 c r))) ((l - 4 c r^2) c[3] cosh[(sqrt[1 - (4 c r^2)/l] t)/(2 c r)] + sqrt[l (l - 4 c r^2)] (c[3] + 2 c r c[4]) sinh[(sqrt[1 - (4 c r^2)/l] t)/(2 c r)]))/(l - 4 c r^2)}}
depending on whether or not l greater or equal 4 c r^2 there more potential complex values in result have farther simplified real result, 1 way or other.
integer wolfram-mathematica differential-equations
Comments
Post a Comment